Sr. No. 2728
Exam Code: 103204
Subjoct Code: 7441
B.A./B.Sc. - 4th Sem. (old syllabus 2016)
(2519)

Paper: Mathematics Paper-I
(Statics \& Solid Geometry)
Time allowed: 3 hrs .
Max. Marks: 50
Note: Attempt any five questions, selecting at least two questions from each section. All questions carry equal marks.

Section-A

1. a) Show that the resultant of two forces acting at a point is maximum when they act in the same direction and is minimum when they act in opposite direction.
b) ABC is a triangle. $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are the middle points of the sides $B C, C A$ and $A B$ respectively, show that the forces acting on a particle and represented by $A D, B E$ and $C F$ are in equilibrium.
2. a) State and prove Polygon Law of Forces concerning forces acting at a point.
b). Prove that if three parallel forces acting on a rigid body be in equilibrium, each is proportional to the distance between the other two.
3. a) Prove that two couples acting in the same plane are equivalent to a single couple whose moment is the algebraic sum of the moments of the separate couple.

(2)

b) P and Q are two like parallel forces. A couple of moment G is combined with them. Show that their resultant is displaced through a distance $\frac{G}{P+Q}$.
4. a) Show that a system of coplanar forces is in equilibrium if the algebraic sum of the moments of all forces about each of three non-collinear points in their plane is zero separately.
b) A body whose weight is W can be just sustained on a rough inclined plane by a force P along the plane by a horizontal force Q . Show that the coefficient of friction is $\mathrm{P}\left[\frac{1}{W^{2}}+\frac{1}{Q^{2}}-\frac{1}{P^{2}}\right]^{1 / 2}$.
5. a) Find the C.G. of a solid right circular cone.
b) The sides of a uniform triangular lamina are 5, 6 and 9 cms in length. Find the perpendicular distance of its C.G. from the shortest side.

Section-B

6. a) Find the equation of the cylinder whose generators intersect the conic $\mathrm{ax}^{2}+2 \mathrm{hxy}+\mathrm{by}^{2}+2 \mathrm{gx}+2 \mathrm{fy}+\mathrm{c}=0, \mathrm{z}=0$ and are parallel to z-axis.
b) Find the equation of the right circular cylinder having for its base the circle $x^{2}+y^{2}+z^{2}=9, x-y+z=3$.
7. a) Show that the equation $f(x, y)=0$, where $f(x, y)$ is a polynomial in x and y, represents a cylinder. What is the locus represented by $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$?
b) Obtain the equation of the right circular cylinder described on the circle through the points ($a, 0,0$), $(0, a, 0),(0,0, a)$ as the guiding circle.

Contd... Pg. 3
8. a) Find the equation of the cone whose vertex is the point $(1,1,0)$ and whose guiding curve is $y=0, x^{2}+z^{2}=4$.
b) Find the equation of the cone which contains the three coordinate axes and the two lines through the origin with direction cosines ($\mathbf{l}_{1}, \mathrm{~m}_{1}, \mathrm{n}_{1}$) and ($\mathbf{1}_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2}$).
9. a) Show that the equation $4 x^{2}-y^{2}+2 z^{2}+2 x y-3 y z+12 x-11 y$ $+6 z+4=0$ represents a cone with vertex $(-1,-2,-3)$.
b) Prove that the equation $\sqrt{f x}+\sqrt{g y}+\sqrt{h z}=0$ represents a cone which touches the co-ordinate planes and that the equation of the reciprocal cone is $\mathrm{fyz}+\mathrm{gzx}+\mathrm{h} x \mathrm{y}=0$.
10. a) Find the equation of the right circular cone generated by straight lines drawn from the origin to cut the circle through the three points (1, 2, 2), (2, 1, -2) and (2, $-2,1$).
b) Show that the equation of the right circular cone whose vertex is the origin, axis the z-axis and semi vertical angle α is $x^{2}+y^{2}=z^{2} \tan ^{2} \alpha$. What is α if this cone has three mutually perpendicular generators?

